1. The absorption, distribution, metabolism, elimination, and drug-drug interaction (DDI) potential of the poly(ADP-ribose) polymerase (PARP) inhibitor rucaparib was characterised .2. Rucaparib showed moderate cellular permeability, moderate human plasma protein binding (70.2%), and slow metabolism in human liver microsomes (HLMs). In HLMs, cytochrome P450 (CYP) 1A2 and CYP3A contributed to the metabolism of rucaparib to its major metabolite M324 with estimated fractions of metabolism catalysed by CYP (fm,CYP) of 0.27 and 0.64, respectively. Rucaparib reversibly inhibited CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3As (IC, 3.55, 12.9, 5.42, 41.6, and 17.2-22.9 µM [2 substrates], respectively), but not CYP2B6 or CYP2C8 (>190 µM). No time-dependent inhibition of any CYP was observed. In cultured human hepatocytes, rucaparib showed concentration-dependent induction of CYP1A2 mRNA and downregulation of CYP3A4 and CYP2B6 mRNA. In transfected cells expressing drug transporters, rucaparib was a substrate for P-gp and BCRP, but not for OATP1B1, OATP1B3, OAT1, OAT3, or OCT2. Rucaparib inhibited P-gp and BCRP (IC, 169 and 55 µM, respectively) and slightly inhibited OATP1B1, OATP1B3, OAT1, and OAT3 (66%, 58%, 58%, and 42% inhibition, respectively) at 300 µM. Rucaparib inhibited OCT1, OCT2, MATE1, and MATE2-K (IC, 4.3, 31, 0.63, and 0.19 μM, respectively).3. DDI risk assessment using static models suggested potential CYP-related DDIs, with rucaparib as a perpetrator. Caution is advised when co-administering rucaparib with sensitive substrates of MATEs, OCT1, and OCT2.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00498254.2020.1737759DOI Listing

Publication Analysis

Top Keywords

rucaparib
11
absorption distribution
8
distribution metabolism
8
drug-drug interaction
8
polyadp-ribose polymerase
8
p-gp bcrp
8
oatp1b1 oatp1b3
8
oatp1b3 oat1
8
oat1 oat3
8
rucaparib inhibited
8

Similar Publications

Background: Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges.

Methods: A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination.

View Article and Find Full Text PDF

In our efforts to enhance sensitivity to PARP inhibitors, we identified clofarabine (CLF) as a potential therapy for drug-resistant ovarian cancer and nuclear trafficking of Cathepsin L (CTSL) as a treatment- responsive biomarker. Using PARP inhibitor-sensitive and -resistant OC cell lines, ex vivo cultures of patient-derived ovarian ascites (OVA), primary ovarian tumors, and xenografts (PDX), we found that CLF monotherapy induces nuclear CTSL (nCTSL) in CLF-responsive cells (CLF-r) and sensitizes them to PARP inhibitors olaparib and rucaparib. In CLF non-responsive cells (CLF-nr), a combination of CLF with olaparib is necessary for nCTSL trafficking and synergy.

View Article and Find Full Text PDF

Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.

View Article and Find Full Text PDF

Background/objectives: Through phase III clinical trials, PARP inhibitors have demonstrated outcome improvements in mCRPC patients with alterations in BRCA1/2 genes who have progressed on a second-generation androgen receptor pathway inhibitor (ARPI). While improving outcomes, PARP inhibitors contribute to the ever-growing economic burden of PCa. The objective of this project is to evaluate the cost-effectiveness of PARP inhibitors (olaparib, rucaparib, or talazoparib) versus the SOC (docetaxel or androgen receptor pathway inhibitors (ARPI)) for previously progressed mCRPC patients with BRCA1/2 mutations from the Canadian healthcare system perspective.

View Article and Find Full Text PDF

and Beyond: Impact on Therapeutic Choices Across Cancer.

Cancers (Basel)

December 2024

Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore.

Background: Identifying patients with gm is crucial to facilitate screening strategies, preventive measures and the usage of targeted therapeutics in their management. This review examines the evidence for the latest predictive and therapeutic approaches in -associated cancers.

Clinical Description: Data supports the use of adjuvant olaparib in patients with gm high-risk HER2-negative breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!