Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) preparations are increasingly employed in cardiac safety studies to support candidate drug selection and regulatory submissions. The value of hiPSC-CM-based approaches depends on their ability to recapitulate the cellular mechanisms responsible for cardiotoxicity as well as overall assay characteristics (thus defining model performance). Different expectations at different drug development stages define the utility of these human-derived models.
Areas Covered: Herein, the authors review the importance of understanding the functional characteristics of the evolving spectrum of simpler (2D) and more complex (co-cultures, 3D constructs, and engineered tissues) human-derived cardiac preparations, and how their performance may be evaluated based on analytical sensitivity, variability, and reproducibility in order to correctly match preparations with expectations of different safety assays. The need for consensus clinical examples of electrophysiologic, contractile, and structural cardiotoxicities essential for benchmarking human-derived models is also discussed.
Expert Opinion: It is helpful (but not essential) that hiPSC-CMs preparations fully recapitulate pharmacological responses of native adult human ventricular myocytes when evaluating cardiotoxicity . Further calibration and model standardization (aligning concordance with clinical findings) are necessary to understand the role of hiPSC-CMs in guiding cardiotoxicity assessments in early drug discovery efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17460441.2020.1736549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!