A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxygen Dependent Purine Lesions in Double-Stranded Oligodeoxynucleotides: Kinetic and Computational Studies Highlight the Mechanism for 5',8-Cyclopurine Formation. | LitMetric

The reaction of HO radical with DNA is intensively studied both mechanistically and analytically for lesions formation. Several aspects related to the reaction paths of purine moieties with the formation of 5',8-cyclopurines (cPu), 8-oxopurines (8-oxo-Pu), and their relationship are not well understood. In this study, we investigated the reaction of HO radical with a 21-mer double-stranded oligodeoxynucleotide (ds-ODNs) in γ-irradiated aqueous solutions under various oxygen concentrations and accurately quantified the six purine lesions (i.e., four cPu and two 8-oxo-Pu) by LC-MS/MS analysis using isotopomeric internal standards. In the absence of oxygen, 8-oxo-Pu lesions are only ∼4 times more than cPu lesions. By increasing oxygen concentration, the 8-oxo-Pu and the cPu gradually increase and decrease, respectively, reaching a gap of ∼130 times at 2.01 × 10 M of O. Kinetic treatment of the data allows to estimate the C5' radical competition between cyclization and oxygen trapping in ds-ODNs, and lastly the rate constants of the four cyclization steps. Tailored computational studies by means of dispersion-corrected DFT calculations were performed on the CGC and TAT in their double-strand models for each cPu diastereoisomer along with the complete reaction pathways of the cyclization steps. Our findings reveal unheralded reaction mechanisms that resolve the long-standing issues with C5' radical cyclization in purine moieties of DNA sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c00945DOI Listing

Publication Analysis

Top Keywords

purine lesions
8
computational studies
8
reaction radical
8
purine moieties
8
c5' radical
8
cyclization steps
8
oxygen
5
lesions
5
reaction
5
cpu
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!