Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations.

Inorg Chem

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.

Published: March 2020

The incorporation of a mechanically interlocked molecule such as pseudorotaxane into metal-organic coordination polymers has afforded plenty of new hybrid materials with special structures and unique properties. In this work, we employ a weakly bound cucurbit[6]uril (CB[6])-bipyridinium pseudorotaxane as a supramolecular precursor to assemble with uranyl, aiming to construct uranyl-rotaxane coordination polymers (URCPs) with intriguing structures. By adjusting the synthetic conditions, a new kinked-helix uranyl rotaxane compound (), together with three other compounds , , and varying from 1D chains to 2D interwoven networks, was obtained. Detailed structural analyses indicate that the pseudorotaxane ligand (@CB[6]) shows great configuration diversity in the construction of URCPs, which is most probably due to the weak binding strength between the host and guest molecules. Specifically, based on the monodentate coordination of the end carboxyl groups of forced by the surrounding unilaterally-chelated oxalate, the entire flexible pseudorotaxane linker will be more likely to undergo conformational change, thereby binding to the uranyl center from both sides of the uranyl equatorial plane and promoting the formation of a kinked helix structure of that is shaped like a Chinese knot along [001]. This work enriches the library of actinide-rotaxane compounds and provides a new approach to construct metal-organic compounds with complicated structures using weakly bonded pseudorotaxanes as well.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c00037DOI Listing

Publication Analysis

Top Keywords

weakly bound
8
coordination polymers
8
pseudorotaxane
5
kinked-helix actinide
4
actinide polyrotaxanes
4
polyrotaxanes weakly
4
bound pseudorotaxane
4
pseudorotaxane linkers
4
linkers variable
4
variable conformations
4

Similar Publications

Many experimental platforms for quantum science depend on state control via laser fields. Frequently, however, the control fidelity is limited by optical phase noise. This is exacerbated in stabilized laser systems where high-frequency phase noise is an unavoidable consequence of feedback.

View Article and Find Full Text PDF

We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.

View Article and Find Full Text PDF

Colloidal Germanium Quantum Dots with Broadly Tunable Size and Light Emission.

J Am Chem Soc

January 2025

McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.

View Article and Find Full Text PDF

The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.

View Article and Find Full Text PDF

Rate coefficients for the reaction of CH with CHO were measured for the first time over the temperature range of 37-603 K, with the CH radicals produced by pulsed laser photolysis and detected by CH radical chemiluminescence following their reaction with O. The low temperature measurements (≤93 K) relevant to the interstellar medium were made within a Laval nozzle gas expansion, while higher temperature measurements (≥308 K) were made within a temperature controlled reaction cell. The rate coefficients display a negative temperature dependence below 300 K, reaching (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!