Zwitterionic near-infrared fluorophore for targeted photothermal cancer therapy.

J Mater Chem B

Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, South Korea.

Published: April 2020

Precise photothermal cancer therapy still relies on the development of multifunctional theranostic agents to integrate tumor-specific targeting, imaging, and therapy. In this study, we identified the zwitterionic near-infrared (NIR) fluorophore ZW800-Cl, an analog of the well-known ZW800-1, and found that it preferentially accumulated in tumors in various xenograft models. We have demonstrated that the optical and physicochemical properties of ZW800-Cl are similar to those of ZW800-1, but it has a unique tumor targetability. Since ZW800-Cl showed binding selectivity to cancer cells in vitro, it could be specifically targeted to xenograft models of multiple tumor types, including MCF-7, NCI-H460, and HT-29. The in vivo results of photothermal cancer therapy indicated that the xenograft tumors could be effectively ablated by the combination of ZW800-Cl and an 808 nm laser irradiation. In this regard, our finding may provide a new approach for developing multifunctional cancer theranostic agents, setting them apart from conventional nanoparticles based on inorganic and polymeric materials. Therefore, ZW800-Cl may hold promise as a multifunctional theranostic agent for tumor-targeted imaging and effective photothermal cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb00275eDOI Listing

Publication Analysis

Top Keywords

photothermal cancer
16
cancer therapy
16
zwitterionic near-infrared
8
multifunctional theranostic
8
theranostic agents
8
xenograft models
8
cancer
6
therapy
5
zw800-cl
5
near-infrared fluorophore
4

Similar Publications

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Background: Metastasis is a leading cause of cancer-related death in castration-resistant prostate cancer (CRPC) patients. Circular RNAs (circRNAs) have emerged as key regulators of the metastasis of various cancers. However, the functional effects and regulatory mechanisms of circRNAs in metastatic CRPC (mCRPC) remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!