Room-temperature conversion of CuSe to CuAgSe nanoparticles to enhance the photocatalytic performance of their composites with TiO.

Dalton Trans

Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 Avenue Albert Einstein, 69626 Villeurbanne, France.

Published: March 2020

Rational design and precise engineering are needed to optimize the structural and chemical parameters of functional materials. In this work, we demonstrate how pre-formed binary metal selenides can be an excellent synthetic choice for the synthesis of ternary coinage metal selenide nanoparticles (NPs) with controlled composition. The mild conditions required to obtain these ternary coinage metal selenide NPs offered an easy synthesis of n% CuAgSe-TiO2 (n = 0.01, 0.1, 0.3 and 1.0 mol%) nanocomposites for photocatalytic applications without compromising the structural and morphological characteristics of TiO2 and without having any organic ligands around the NPs. The use of ternary metal selenide nanocomposites CuAgSe-TiO2 results in a clear improvement in their photocatalytic activity for the photodegradation of formic acid as compared to the well-known benchmark for photocatalysis, TiO2 (P25), and its binary metal selenide nanocomposites Cu2-xSe-TiO2. DFT calculations establish semi-metallic behavior of CuAgSe NPs and show that CuAgSe-TiO2 forms a semimetallic-semiconductor heterojunction allowing a better charge separation to enhance its photocatalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt04726cDOI Listing

Publication Analysis

Top Keywords

metal selenide
16
enhance photocatalytic
8
binary metal
8
ternary coinage
8
coinage metal
8
selenide nanocomposites
8
photocatalytic activity
8
metal
5
room-temperature conversion
4
conversion cuse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!