Four new heteroleptic Ni(ii) complexes with general formula [Ni(ii)(LL')] (L = 2-(methylene-1,1'-dithiolato)-5-phenylcyclohexane-1,3-dione (L1) and 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione (L2); L' = 1,2-bis(diphenylphosphino)ethane (dppe) and bis(diphenylphosphino)monosulphide methane (dppms) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, 1H, 13C{1H} and 31P{1H} NMR). All complexes 1-4 have also been characterized by PXRD and single crystal X-ray crystallography. The solid state molecular structures revealed distorted square planar geometry about the four-coordinate Ni(ii) metal centre together with rare NiH-C intra/intermolecular anagostic interactions in axial positions. In these complexes supramolecular structures have been sustained by non-covalent C-HO, C-OH-O, C-Hπ, C-Hπ (NiCS2, chelate), ππ and HH interactions. Their electrocatalytic properties have been investigated for oxygen evolution reaction (OER) in which complex 2 showed the highest activity with 10 mA cm-2 at the potential of 1.58 V vs. RHE. In addition, complex 2 also exhibits an OER onset potential at 1.52 V vs. RHE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt04923a | DOI Listing |
ACS Phys Chem Au
January 2025
University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.
The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.
View Article and Find Full Text PDFThe James Webb Space Telescope has discovered a surprising population of bright galaxies in the very early Universe (≲500 Myr after the Big Bang) that is hard to explain with conventional galaxy-formation models and whose physical properties are not fully understood. Insight into their internal physics is best captured through nebular lines, but at these early epochs, the brightest of these spectral features are redshifted into the mid-infrared and remain elusive. Using the mid-infrared instrument onboard the James Webb Space Telescope, here we present a detection of Hα and doubly ionized oxygen ([O iii] 4959,5007 Å) from the bright, ultra-high-redshift galaxy candidate GHZ2/GLASS-z12.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
The lattice-strain engineering of high-entropy-oxide nanoparticles (HEO-NPs) is considered an effective strategy for achieving outstanding performance in various applications. However, lattice-strain engineering independent of the composition variation still confronts significant challenges, with existing modulation techniques difficult to achieve mass production. Herein, a novel continuous-flow synthesis strategy by flame spray pyrolysis (FSP) is proposed, which air varying flow rates is introduced for fast quenching to alter the cooling rate and control the lattice strain of HEO-NPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!