Here we present a one-step synthesis that provides silicon nanocrystals with a thin shell composed of a ceramic-like carbonyl based compound, embedded in a porous organosilicon film. The silicon nanocrystals were synthesised from hydrogen silsesquioxane molecules, modified with organic molecules containing carbonyl groups, which were annealed at 1000 °C in a slightly reducing 5% H2 : 95% Ar atmosphere. The organic character of the shell was preserved after annealing due to trapping of organic molecules inside the HSQ-derived oxide matrix that forms during the annealing. The individual silicon nanocrystals, studied by single dot spectroscopy, exhibited a significantly narrower emission peak at room temperature (lowest linewidth ∼ 17 meV) compared to silicon nanocrystals embedded in a silicon oxide shell (150 meV). Their emission linewidths are even significantly narrower than those of single CdSe quantum dots (>50 meV). It is hypothesized that the Si-core-thin shell structure of the nanoparticle is responsible for the unique optical properties. Its formation within one synthesis step opens new opportunities for silicon-based quantum dots. The luminescence from the produced nanocrystals covers a broad spectral range from 530-720 nm (1.7-2.3 eV) suggesting strong application potential for solar cells and LEDs, following the development of a suitable mass-fabrication protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9fd00093c | DOI Listing |
J Mater Chem B
January 2025
Oral Implant Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.
Common treatment approaches for triple-negative breast cancer (TNBC) are associated with severe side effects due to the unfavorable biodistribution profile of potent chemotherapeutics. Here, we explored the potential of TNBC-targeting aptamer-decorated porous silicon nanoparticles (pSiNPs) as targeted nanocarriers for TNBC. A "salt-aging" strategy was employed to fabricate a TNBC-targeting aptamer functionalized pSiNP that was highly colloidally stable.
View Article and Find Full Text PDFDrug Deliv
December 2025
College of Pharmacy, Xinxiang Medical University, Xinxiang, China.
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!