A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian Semi-parametric Design (BSD) for adaptive dose-finding with multiple strata. | LitMetric

In the era of precision medicine, it is of increasing interest to consider multiple strata (e.g. indications, regions, or subgroups) within a single oncology dose-finding study when identifying the maximum tolerated dose (MTD). We propose two Bayesian semi-parametric designs (BSD) for dose-finding with multiple strata to allow for both adaptively dosing patients based on various toxicity profiles and efficient identification of the MTD for each stratum. We develop non-parametric priors based on the Dirichlet process to allow for a flexible prior distribution and negate the need for a pre-specified exchangeability parameter. The two BSD models are built under different prior beliefs of strata heterogeneity and allow for appropriate borrowing of information across similar strata. Simulation studies are performed to evaluate the BSD model performance by comparing it with existing methods, including the fully stratified, exchangeability, and exchangeability-non-exchangeability models. In general, our BSD models outperform the competing methods in correctly identifying the MTD for different strata and necessitate a smaller sample size to determine the MTD. The BSD models are robust to various heterogeneity assumptions and can be easily extended to other binary and time to event endpoints.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2020.1730870DOI Listing

Publication Analysis

Top Keywords

multiple strata
12
bsd models
12
bayesian semi-parametric
8
dose-finding multiple
8
bsd
6
strata
6
semi-parametric design
4
design bsd
4
bsd adaptive
4
adaptive dose-finding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!