Neural network correlates of high-altitude adaptive genetic variants in Tibetans: A pilot, exploratory study.

Hum Brain Mapp

Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Institute for Brain Research and Rehabilitation, Guangzhou, China.

Published: June 2020

AI Article Synopsis

  • The study investigates how genetic variations related to high-altitude (HA) adaptation affect physiological traits and brain network structures in 135 indigenous Tibetan highlanders.
  • It identifies specific genetic markers (SNPs) that influence physiological traits like heart rate and oxygen levels but found no significant impact on neuropsychological functions or functional brain networks.
  • The research highlights the complex relationships between genetic adaptation to HA and structural brain connectivity, suggesting potential applications for improving responses to chronic hypoxia in extreme environments or diseases.

Article Abstract

Although substantial progress has been made in the identification of genetic substrates underlying physiology, neuropsychology, and brain organization, the genotype-phenotype associations remain largely unknown in the context of high-altitude (HA) adaptation. Here, we related HA adaptive genetic variants in three gene loci (EGLN1, EPAS1, and PPARA) to interindividual variance in a set of physiological characteristics, neuropsychological tests, and topological attributes of large-scale structural and functional brain networks in 135 indigenous Tibetan highlanders. Analyses of individual HA adaptive single-nucleotide polymorphisms (SNPs) revealed that specific SNPs selectively modulated physiological characteristics (erythrocyte level, ratio between forced expiratory volume in the first second to forced vital capacity, arterial oxygen saturation, and heart rate) and structural network centrality (the left anterior orbital gyrus) with no effects on neuropsychology or functional brain networks. Further analyses of genetic adaptive scores, which summarized the overall degree of genetic adaptation to HA, revealed significant correlations only with structural brain networks with respect to local interconnectivity of the whole networks, intermodule communication between the right frontal and parietal module and the left occipital module, nodal centrality in several frontal regions, and connectivity strength of a subnetwork predominantly involving in intramodule edges in the right temporal and occipital module. Moreover, the associations were dependent on gene loci, weight types, or topological scales. Together, these findings shed new light on genotype-phenotype interactions under HA hypoxia and have important implications for developing new strategies to optimize organism and tissue responses to chronic hypoxia induced by extreme environments or diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267913PMC
http://dx.doi.org/10.1002/hbm.24954DOI Listing

Publication Analysis

Top Keywords

brain networks
12
adaptive genetic
8
genetic variants
8
gene loci
8
physiological characteristics
8
functional brain
8
occipital module
8
genetic
5
neural network
4
network correlates
4

Similar Publications

Language plays an important role in ensuring gender inclusivity within neurology. Despite progress in language inclusivity, such as the emergence of explicit pronouns, more remains to be done. Historically, sex and gender have been used interchangeably, but they are, in fact, distinct concepts.

View Article and Find Full Text PDF

Objective: Idiopathic generalized epilepsy (IGE) in adults comprise juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), and epilepsy with generalized tonic-clonic seizures alone (EGTCS), which are defined by their seizure types but also cover a broad endophenotype of symptoms. Controversy exists on whether adult IGE is a group of distinct diseases or a clinical spectrum of one disease. Here, we used a deeply phenotyped cohort to test the hypothesis that IGE comprises three distinct clinical entities.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.

View Article and Find Full Text PDF

Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.

Brain Struct Funct

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery.

View Article and Find Full Text PDF

Importance: Molecular techniques, including next-generation sequencing, genomic copy number profiling, fusion transcript detection, and genomic DNA methylation arrays, are now indispensable tools for the workup of central nervous system (CNS) tumors. Yet there remains a great deal of heterogeneity in using such biomarker testing across institutions and hospital systems. This is in large part because there is a persistent reluctance among third-party payers to cover molecular testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!