Although substantial progress has been made in the identification of genetic substrates underlying physiology, neuropsychology, and brain organization, the genotype-phenotype associations remain largely unknown in the context of high-altitude (HA) adaptation. Here, we related HA adaptive genetic variants in three gene loci (EGLN1, EPAS1, and PPARA) to interindividual variance in a set of physiological characteristics, neuropsychological tests, and topological attributes of large-scale structural and functional brain networks in 135 indigenous Tibetan highlanders. Analyses of individual HA adaptive single-nucleotide polymorphisms (SNPs) revealed that specific SNPs selectively modulated physiological characteristics (erythrocyte level, ratio between forced expiratory volume in the first second to forced vital capacity, arterial oxygen saturation, and heart rate) and structural network centrality (the left anterior orbital gyrus) with no effects on neuropsychology or functional brain networks. Further analyses of genetic adaptive scores, which summarized the overall degree of genetic adaptation to HA, revealed significant correlations only with structural brain networks with respect to local interconnectivity of the whole networks, intermodule communication between the right frontal and parietal module and the left occipital module, nodal centrality in several frontal regions, and connectivity strength of a subnetwork predominantly involving in intramodule edges in the right temporal and occipital module. Moreover, the associations were dependent on gene loci, weight types, or topological scales. Together, these findings shed new light on genotype-phenotype interactions under HA hypoxia and have important implications for developing new strategies to optimize organism and tissue responses to chronic hypoxia induced by extreme environments or diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267913 | PMC |
http://dx.doi.org/10.1002/hbm.24954 | DOI Listing |
Neurology
January 2025
Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
Language plays an important role in ensuring gender inclusivity within neurology. Despite progress in language inclusivity, such as the emergence of explicit pronouns, more remains to be done. Historically, sex and gender have been used interchangeably, but they are, in fact, distinct concepts.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Neurology, Odense University Hospital, Odense, Denmark.
Objective: Idiopathic generalized epilepsy (IGE) in adults comprise juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), and epilepsy with generalized tonic-clonic seizures alone (EGTCS), which are defined by their seizure types but also cover a broad endophenotype of symptoms. Controversy exists on whether adult IGE is a group of distinct diseases or a clinical spectrum of one disease. Here, we used a deeply phenotyped cohort to test the hypothesis that IGE comprises three distinct clinical entities.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery.
View Article and Find Full Text PDFJAMA Oncol
December 2024
Mayo Clinic, Departments of Oncology and Molecular Medicine, Rochester, Minnesota.
Importance: Molecular techniques, including next-generation sequencing, genomic copy number profiling, fusion transcript detection, and genomic DNA methylation arrays, are now indispensable tools for the workup of central nervous system (CNS) tumors. Yet there remains a great deal of heterogeneity in using such biomarker testing across institutions and hospital systems. This is in large part because there is a persistent reluctance among third-party payers to cover molecular testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!