Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aim: Chronic inflammation links closely to insulin resistance and lipid metabolism in nonalcoholic fatty liver disease (NAFLD). Macrophage M1 activation plays an important role in the initiation and continuing of pro-inflammatory response of NAFLD. Our study was to investigate whether macrophage M1/M2 polarization switching would affect hepatic inflammation and lipid metabolism through modulation of peroxisome proliferator-activated receptor-gamma (PPAR-γ) activity in vivo and in vitro.
Methods: RAW264.7 macrophages were treated with different fatty acids, and cell culture supernatants were collected to prepare conditioned media (CM). Different co-culture systems between primary hepatocytes and CM from macrophages were established. A PPAR-γ agonist or antagonist was administered to regulate PPAR-γ activity and macrophage polarization. M1/M2 phenotype markers, inflammatory signaling pathway, and lipid-related genes expression were determined. Wild-type C57BL/6 mice were fed a high-fat diet to induce NAFLD and given rosiglitazone to regulate PPAR-γ activity in vivo.
Results: Saturated fatty acids induced M1-polarized macrophages while polyunsaturated fatty acids induced M2-polarized macrophages. M1-polarized macrophages significantly promoted lipid synthesis and accumulation in primary hepatocytes through upregulation of a toll-like receptor 4 (TLR4)/NF-κB signaling pathway. The PPAR-γ agonist made lipid-induced M1-polarized macrophages switch to an M2-predominant phenotype, while PPAR-γ antagonist had the opposite effect. Macrophage polarization shifting subsequently affected lipid metabolism in primary hepatocytes. Administration of rosiglitazone improved high-fat diet induced hepatic steatosis and lipid metabolism through reducing hepatic TLR4/NF-κB expression and M1-polarized Kupffer cells.
Conclusions: Lipid-induced macrophage M1 polarization promoted hepatic lipid metabolism. Modulation of PPAR-γ activity could shift macrophage polarization and subsequently affect lipid metabolism. Upregulation of the TLR4/NF-κB signaling pathway is closely linked to dysregulated lipid metabolism in NAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jgh.15025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!