Objectives: Vocal fold (VF) stiffness and geometry are determinant variables in voice production. Type 1 medialization thyroplasty (MT), the primary surgical treatment for glottic insufficiency, changes both of these variables. Understanding the cause and effect relationship between these variables and acoustic output might improve voice outcomes after MT. In this study, the effects of thyroplasty implants with variable stiffness on glottal shape and acoustics were investigated.
Methods: In an ex vivo human larynx phonation model, bilateral MT with implants of four stiffness levels (1386, 21.6, 9.3, and 5.5 kPa) were performed. Resulting acoustics and aerodynamics were measured across multiple airflow levels. A vertical partial hemilaryngectomy was performed and stereoscopic images of the VF medial surface taken to reconstruct its three-dimensional (3D) surface contour. The results were compared across implants.
Results: The effects of implant stiffness on acoustics varied by airflow. Softer implants resulted in improved acoustics, as measured by cepstral peak prominence (CPP), at lower airflow levels compared to stiffer implants but this relationship reversed at high airflow levels. Stiffer implants generally required less airflow to generate a given subglottal pressure. Stiffer implants resulted in greater medialized surface area and maximal medialization, but all implants had similar effects on overall VF medial surface contour.
Conclusion: Softer implants result in less medialization but better acoustics at low airflow rates. Stiffer implants provide better acoustics and more stable pressure-flow relationships at higher airflow rates. This highlights a potential role for patient-specific customized thyroplasty implants of various stiffness levels.
Level Of Evidence: NA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042641 | PMC |
http://dx.doi.org/10.1002/lio2.322 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:
Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2025
Centre for Regenerative Medicine, Department for Health Science, University for Continuing Education Krems, Krems an der Donau, Austria; Austrian Cluster for Tissue Regeneration, Austria.
Objective: To investigate the suitability of different material compositions and structural designs for 3D-printed meniscus implants using finite element analysis (FEA) to improve joint function after meniscal injury and guide future implant development.
Design: This experimental study involved in-silico testing of a meniscus model developed from two materials: a specially formulated hydrogel composed of silk fibroin (SF), gelatine, and decellularized meniscus-derived extracellular matrix (MD-dECM), and polyurethane (PU) with stiffness levels of 54 and 205 MPa. Both single-material implants and a two-volumetric meniscus model with an SF/gelatine/MD-dECM core and a PU shell were analysed using FEA to simulate the biomechanical performance under physiological conditions.
Surg Technol Int
November 2024
Stryker, Joint Replacement, Mahwah, New Jeresey.
JBJS Essent Surg Tech
October 2024
The Shoulder Center, Baylor Scott & White Research Institute, Dallas, Texas.
Background: Cementless reverse shoulder arthroplasty has become increasingly popular because of the improved implant design, porous ingrowth surface, and surgical techniques. When avoiding the risks of cement use, a press-fit arthroplasty stem that has been implanted may not feel immediately stable, especially if the medullary canal size is in between standard stem diameters. To help surgeons improve fixation and avoid overstuffing the medullary canal, we present the matchstick autograft augmentation technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!