PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034999PMC
http://dx.doi.org/10.1126/sciadv.aay5064DOI Listing

Publication Analysis

Top Keywords

optical control
8
control protein
8
targeting chimeras
8
photacs enable
4
enable optical
4
protein degradation
4
degradation protacs
4
protacs proteolysis
4
proteolysis targeting
4
chimeras bifunctional
4

Similar Publications

Modular Light-Emitting Diode Shelving Systems for Scalable Optogenetics.

Methods Mol Biol

December 2024

Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.

Optogenetic experiments rely on the controlled delivery of light to diverse biological systems. Impressive devices have been recently developed to stimulate cells and small animals with multiple wavelengths and intensities. However, existing hardware solutions are often limited to a single sample holder, and their design and cost can further limit scalability.

View Article and Find Full Text PDF

Automated Plate Reader-Based Assays of Light-Activated GPCRs.

Methods Mol Biol

December 2024

Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.

In the emerging field of optogenetics, light-sensitive G-protein coupled receptors (GPCRs) allow for the temporally precise control of canonical cell signaling pathways. Expressing, stimulating, and measuring the activity of light-sensitive GPCRs (e.g.

View Article and Find Full Text PDF

Organelles play essential roles in cellular homeostasis and various cellular functions in eukaryotic cells. The current experimental strategy to modulate organelle functions is limited due to the dynamic nature and subcellular distribution of organelles in live cells. Optogenetics utilizes photoactivatable proteins to enable dynamic control of molecular activities through visible light.

View Article and Find Full Text PDF

Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.

View Article and Find Full Text PDF

Hierarchical existential prior based on expanded pseudo-label for crack detection.

Rev Sci Instrum

December 2024

School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, People's Republic of China.

Road crack detection approaches based on the image processing technique have attracted much attention during the past decade due to their convenience and efficiency, but most of them cannot achieve the expected performances due to the complex background interference and severe category imbalance of road images. This paper presents a hierarchical existential prior based on an expanded pseudo-label for crack detection. In particular, the framework contains three variants of U-Net, and each sub-network is trained by pseudo-labels generated by transforming semantic categories of non-crack pixels distributed in the neighborhoods of crack ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!