Interfering MSN-NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer.

Sci Adv

Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China.

Published: February 2020

Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030932PMC
http://dx.doi.org/10.1126/sciadv.aaw9960DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
creb signaling
8
triple-negative breast
8
msn
8
tumor growth
8
growth vivo
8
breast
6
cancer
5
interfering msn-nono
4
msn-nono complex-activated
4

Similar Publications

Cancer disrupts intratumoral innate-adaptive immune crosstalk, but how the systemic immune landscape evolves during breast cancer progression remains unclear. We profiled circulating immune cells in stage I-III and stage IV triple-negative breast cancer (TNBC) patients and healthy donors (HDs). Metastatic TNBC (mTNBC) patients had reduced T cells, dendritic cells, and differentiated B cells compared to non-metastatic TNBC patients and HDs, partly linked to prior chemotherapy.

View Article and Find Full Text PDF

Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy.

EJNMMI Radiopharm Chem

January 2025

Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.

Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).

View Article and Find Full Text PDF

The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method.

View Article and Find Full Text PDF

To research the value of Autostrain right ventricular (RV) technology in detecting and preventing right ventricular myocardial injury in patients undergoing breast cancer chemotherapy by providing an imaging basis for early identification. To examine the changes in various cardiac function parameters before and after chemotherapy, two-dimensional echocardiography was employed 48 h before chemotherapy, 48 h after the fourth cycle of chemotherapy, and 48 h after the eighth cycle of chemotherapy, respectively. The patients included those with breast cancer who underwent surgery and were primarily administered anthracycline-based chemotherapeutic drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!