Cdc42 controls secretory granules morphology in rodent salivary glands in vivo.

Commun Integr Biol

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Published: February 2020

We previously reported that the small GTPase Cdc42 negatively regulates endocytosis in the salivary gland of live mice. By using intravital subcellular microscopy, we showed that depletion of Cdc42 causes the mis-sorting of plasma membrane components into intracellular vesicles, ultimately leading to the impairment of the homeostasis of the apical plasma membrane. In this study, we report that, besides, Cdc42 depletion alters the ultrastructure of large secretory granules analyzed by transmission electron microscopy. We found that lack of Cdc42 increases the number of granules per cell and alters their structure. Specifically, granules are smaller, less circular and exhibit heterogeneous electron densities in their lumen. Our findings suggest a novel role for Cdc42 in controlling granule biogenesis and/or maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039664PMC
http://dx.doi.org/10.1080/19420889.2020.1724605DOI Listing

Publication Analysis

Top Keywords

secretory granules
8
plasma membrane
8
cdc42
6
cdc42 controls
4
controls secretory
4
granules
4
granules morphology
4
morphology rodent
4
rodent salivary
4
salivary glands
4

Similar Publications

SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Surpassing protein specificity in biomimetics of bacterial amyloids.

Int J Biol Macromol

January 2025

Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Research Institute Sant Pau (IR Sant Pau), Barcelona, Spain. Electronic address:

In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn, that promotes protein-protein interactions.

View Article and Find Full Text PDF

The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease.

Int J Biol Sci

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China.

Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized.

View Article and Find Full Text PDF

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!