Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The H mobilization model has been recently reported to accurately describe intradialytic kinetics of plasma bicarbonate concentration; however, the ability of this model to predict changing bicarbonate kinetics after altering the hemodialysis treatment prescription is unclear.
Methods: We considered the H mobilization model as a pseudo-one-compartment model and showed theoretically that it can be used to determine the acid generation (or production) rate for hemodialysis patients at steady state. It was then demonstrated how changes in predialytic, intradialytic, and immediate postdialytic plasma bicarbonate (or total carbon dioxide) concentrations can be calculated after altering the hemodialysis treatment prescription.
Results: Example calculations showed that the H mobilization model when considered as a pseudo-one-compartment model predicted increases or decreases in plasma total carbon dioxide concentrations throughout the entire treatment when the dialysate bicarbonate concentration is increased or decreased, respectively, during conventional thrice weekly hemodialysis treatments. It was further shown that this model allowed prediction of the change in plasma total carbon dioxide concentration after transfer of patients from conventional thrice weekly to daily hemodialysis using both bicarbonate and lactate as dialysate buffer bases.
Conclusion: The H mobilization model can predict changes in plasma bicarbonate or total carbon dioxide concentration during hemodialysis after altering the hemodialysis treatment prescription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0391398820906524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!