Extreme ultraviolet (EUV) lithography is a prospective technology for the fabrication of integrated chips with critical dimensions (CDs) under 10-nm. However, since chips with similar CDs have similar defect sizes, one of the most critical problems in extreme ultraviolet lithography (EUVL) is mask defect and repair. Defects cause local areas of undesired absorption, reflectivity, or phase change, which ultimately lead to imperfections in the printed image. For example, phase defects may cause substantial changes in image anomalies with different focuses. In this paper, the results of EUV vote-taking lithography are calculated and compared with other repair methods using the scattering matrix (S-matrix) method. Vote-taking lithography with the assumed perfect defect-free masks () can maximize 90% and 91% repair improvements at pit defect and dump defect, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2020.17822 | DOI Listing |
RSC Adv
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica Taipei 106 Taiwan
Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:
Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!