Active targeting compound, a non-iodinated derivative of IK-IK-I-azaBODIPY (1a) was previously reported to preferentially bind melanoma over healthy cells. In this study, we evaluate the photodynamic therapy (PDT) efficiency on melanoma cells of 1a, together with its reversed sequence compound KI-KI-I-azaBODIPY (1b) and a non-targeted control I-azaBODIPY-NH (2). All three test compounds possess absorption wavelengths in the near-infrared (NIR) region (λ between 678 and 687 nm) which alleviate melanin interference and allow deeper tissue penetration. In vitro studies revealed 1a and 1b are promising photosensitizers with enhanced singlet oxygen generation, have increased uptake by B16-F10 melanoma cells via clathrin-mediated endocytosis and good photocytotoxic efficacies. Ex vivo biodistribution assays showed both 1a and 1b accumulated in the tumour. In B16-F10 tumour bearing-C57BL/6 mice, 10 mg/kg of 1b and light irradiation was found to reduce tumour volume by up to 23% at day-3. Doubling the dosage of 1b (20 mg/kg) enhanced the antitumour effect, showing 96% maximum tumour volume reduction at day-7 and tumour growth suppression for up to 12 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119189 | DOI Listing |
Viruses
December 2024
Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratorio de Microbiología Celular, Centro de Ciencias Médicas aplicadas, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile.
is a Gram-negative bacillus responsible for a wide variety of potentially fatal infections and, in turn, constitutes a critical agent of healthcare-associated infections. Moreover, is characterized by multi-drug-resistant (MDR) bacteria, such as extended-spectrum beta-lactamases (ESBL) and carbapenemase (KPC) producer strains, representing a significant health problem. Because resistances make it difficult to eradicate using antibiotics, antimicrobial photodynamic therapy (aPDT) promises to be a favorable approach to complementing conventional therapy against MDR bacteria.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Nantong University, Nantong 226001, China.
Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.
View Article and Find Full Text PDFPharmaceutics
December 2024
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia.
Since its discovery more than 100 years ago, photodynamic therapy (PDT) has become a potent strategy for the treatment of many types of cancer [...
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil.
Background: Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations.
Objective: The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!