EPR of site-directed spin-labeled proteins: A powerful tool to study structural flexibility.

Arch Biochem Biophys

Centro Universitario de la Defensa, Ctra de Huesca s/n, 50090, Zaragoza, Spain; Laboratory of Physical Chemistry ETH Zurich, 8093 Zürich, Switzerland. Electronic address:

Published: May 2020

Electron Paramagnetic Resonance is a spectroscopic technique which, in combination with site-directed spin-labeling, provides structural and dynamic information about proteins in conditions similar to those of their physiological environment. The information is sequence-resolved, as it is based on probing the local dynamics of a paramagnetic label incorporated as a side chain of a selected amino acid. EPR does not impose a limit on the size of the protein or protein complex, as long as it is amenable to site-directed mutagenesis, and is able to obtain reliable distance distributions between two or more labels (identical or different).. The mean value, width and shape of distance distributions, as well as their dependence upon the state of the protein or interactions with physiological partners, provide insight into order-disorder transitions and the roles of protein flexibility. The main potentialities and limitations of the technique are revised and illustrated with examples of proteins for which order-disorder play an important role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2020.108323DOI Listing

Publication Analysis

Top Keywords

distance distributions
8
epr site-directed
4
site-directed spin-labeled
4
spin-labeled proteins
4
proteins powerful
4
powerful tool
4
tool study
4
study structural
4
structural flexibility
4
flexibility electron
4

Similar Publications

Background: High maternal mortality has remained a problem, especially in developing countries. Ensuring availability and utilization of Basic Emergency Obstetric and Newborn Care services (BEmONC) reduce maternal morbidity and mortality. The study aimed to determine the geospatial distribution, accessibility and utilization of BEmONC services in Jigawa State.

View Article and Find Full Text PDF

The explosive growth of mobile data traffic and the demands of 6 G networks for ultra-high data rates and low latency necessitate advanced infrastructure solutions. One promising approach is the implementation of radio-over-fiber (RoF)-based distributed antenna systems (DAS), which can efficiently transmit radio frequency signals over optical fiber, especially in dense indoor environments. However, analog RoF systems face challenges, including noise, nonlinearities, and power fading caused by chromatic dispersion.

View Article and Find Full Text PDF

Accurately estimating phase is crucial in continuous-variable quantum key distribution systems, directly impacting the final secret key rate. In previous systems that utilize the local local oscillator, phase estimation is closely tied to the amplitude and signal-to-noise ratio (SNR) of the pilot signal. As SNR decreases, so does the accuracy of phase estimation, leading to increased excess noise and a potential loss of the system's secret key rate.

View Article and Find Full Text PDF

In the last few years, new ways of structuring light have emerged, with the potential to be used in a wide variety of applications, including materials processing, micro-particle manipulation and charged particle acceleration. One of these techniques is the structured laser beam (SLB). The important advantages of this beam are the simple generation principle using spherical aberration and the potentially infinite propagation range.

View Article and Find Full Text PDF

Adapting a style based generative adversarial network to create images depicting cleft lip deformity.

Sci Rep

January 2025

Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.

Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!