Vesicular stomatitis (VS), characterized by vesicular lesions, produces significant economic losses in livestock industry. Infection by its causative agent, VS virus (VSV), has been previously shown to be mediated by the glycoprotein (G) during attachment, endocytosis and membrane fusion. In the current study, we revealed a novel role of VSV G protein in negative regulation of host cell pro-inflammatory responses. We determined that VSV G protein inhibited lipopolysaccharide (LPS)-induced pro-inflammatory responses as naïve VSV virions in murine peritoneal macrophage-like cell line RAW 264.7. Furthermore, we identified that VSV G protein suppressed nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK)-mediated pro-inflammatory pathways in a dose-dependent manner. Moreover, we demonstrated that α2-3-linked sialic acids on VSV G protein were involved in antagonizing NF-κB- and MAPK-mediated pro-inflammatory responses. All these results expand the knowledge of VSV pathogenesis and strengthen the importance of VSV G protein in host innate immunity, which support implications for the development of VSV-based vaccination and oncolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!