Background: Leishmaniasis is a vector-borne neglected disease. Inside the natural sand fly vector, the promastigote forms of Leishmania undergo a series of extracellular developmental stages to reach the infectious stage, the metacyclic promastigote. There is limited information regarding the expression profile of L. infantum developmental stages inside the sand fly vector, and molecular markers that can distinguish the different parasite stages are lacking.
Methodology/principal Findings: We performed RNAseq on unaltered midguts of the sand fly Lutzomyia longipalpis after infection with L. infantum parasites. RNAseq was carried out at various time points throughout parasite development. Principal component analysis separated the transcripts corresponding to the different Leishmania promastigote stages, the procyclic, nectomonad, leptomonad and metacyclics. Importantly, there were a significant number of differentially expressed genes when comparing the sequential development of the various Leishmania stages in the sand fly. There were 836 differentially expressed (DE) genes between procyclic and long nectomonad promastigotes; 113 DE genes between nectomonad and leptomonad promastigotes; and 302 DE genes between leptomonad and metacyclic promastigotes. Most of the DE genes do not overlap across stages, highlighting the uniqueness of each Leishmania stage. Furthermore, the different stages of Leishmania parasites exhibited specific transcriptional enrichment across chromosomes. Using the transcriptional signatures exhibited by distinct Leishmania stages during their development in the sand fly midgut, we determined the genes predominantly enriched in each stage, identifying multiple potential stage-specific markers for L. infantum.
Conclusions: Overall, these findings demonstrate the transcriptional plasticity of the Leishmania parasite inside the sand fly vector and provide a repertoire of potential stage-specific markers for further development as molecular tools for epidemiological studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053709 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0008014 | DOI Listing |
Viruses
December 2024
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.
Toscana virus (TOSV), a member of the genus transmitted by sandflies, is acknowledged for its capacity to cause neurological infections and is widely distributed across Mediterranean countries. The potential geographic distribution and risk to the human population remained obscure due to its neglected nature. We searched PubMed and Web of Science for articles published between 1 January 1971 and 30 June 2023 to extract data on TOSV detection in vectors, vertebrates and humans, clinical information of human patients, as well as the occurrence of two identified sandfly vectors for TOSV.
View Article and Find Full Text PDFPathogens
January 2025
ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France.
Canine leishmaniosis (CanL), caused by the protozoan and transmitted primarily by phlebotomine sand flies, poses significant challenges for zoonotic disease management [...
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.
The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
January 2025
Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong. Electronic address:
Leishmania spp. are sand fly-borne parasitic protozoa of worldwide distribution that may severely affect the health and welfare of dogs as well as of other mammalian species, including humans. Algeria is among the most affected countries, counting several cases of Leishmania infantum infection in humans and dogs.
View Article and Find Full Text PDFJ Arthropod Borne Dis
June 2024
Exploration and Valorization of Steppe Ecosystems Laboratory, Faculty of Nature and Life science, University of Djelfa, Djelfa, Algeria.
Background: The wide distribution of phlebotomine vectors complicates the leishmaniasis situation in the world, with the risk of spreading from rural to urban areas. Our study investigates for the first time the ecology and distribution of sand fly populations in leishmaniasis focus (Djelfa, Algeria).
Methods: Sampling is performed using light traps from August 2021 to July 2022 at ten sites with different biotopes: two peri-urban stations (Ain Oussera and Hassi Bahbah), one urban station (Djelfa), and three rural stations (Ain El-Bel, Haniet Ouled Salem and Mlaga).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!