Climate warming has been increasing ocean water temperature and decreasing oxygen concentrations, exposing aquatic organisms to environmental stress conditions. The shrimp Litopenaeus vannamei manages to survive these harsh environmental conditions by enhancing their antioxidant defenses, among other strategies. In this study, we report the mitochondrial manganese superoxide dismutase (mMnSOD) nucleotide and deduced amino acid sequences and its gene expression in L. vannamei tissues. The deduced protein has 220 amino acids with a signal peptide of 20 amino acids. Expression of mMnSOD was analyzed in hepatopancreas, gills and muscle, where gills had highest expression in normoxic conditions. In addition, shrimp were subjected to high temperature, hypoxia and reoxygenation to analyze the effect on the expression of mMnSOD and SOD activity in mitochondria. High temperature and hypoxia showed a synergistic effect in the up-regulation on expression of mMnSOD in gills and hepatopancreas. Moreover, induction in SOD activity was found in the mitochondrial fraction from gills of normoxia at high temperature, probably due to an overproduction of reactive oxygen species caused by an elevated metabolic rate due to the stress temperature. These results suggest that the combined stress conditions of hypoxia and high temperature trigger molecularly the antioxidant response in L. vannamei in a higher degree than only one stressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2020.102519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!