Heat shock proteins (HSPs) greatly contribute to insect stress tolerance and enhance survival and adaptation in severe environmental conditions. To investigate the potential roles of HSPs in the spruce budworm, Choristoneura fumiferana (L.), an important native pest of forests in North America, we found eight ATP-dependent HSP transcripts (CfHSPs). Based on molecular characteristics, the identified HSP genes were classified into HSP70 and HSP90 families, and phylogenetic results showed that they had orthologues in other insects. The transcript levels of these HSPs were measured using RT-qPCR under normal and stressful conditions in the laboratory. Under normal conditions, three HSP genes were consistently expressed in all life stages, whereas expression of the other five genes was dependent on the developmental stage. In the larvae, most CfHSP transcripts displayed similar expression levels among different tissues. Under heat shock conditions, one HSP70 gene and one HSP90 gene were upregulated in all life stages. One HSP70 gene was upregulated after cold injury in the larval stage. With starvation, HSP gene expression exhibited complex expression patterns; most of them were downregulated. These results suggest that the ATP-dependent HSPs have multiple roles during normal development as well as under stressful conditions including heat, cold injury and starvation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2019.102493 | DOI Listing |
Front Plant Sci
December 2024
SD Guthrie Research Sdn. Bhd., Banting, Selangor Darul Ehsan, Malaysia.
Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFThe cellular stress response (CSR) is a conserved mechanism that protects cells from environmental and physiological stressors. The heat shock response (HSR), a critical component of the CSR, utilizes molecular chaperones to mitigate proteotoxic stress caused by elevated temperatures. We hypothesized that while the canonical HSR pathways are conserved across cell types, specific cell lines may exhibit unique transcriptional responses to heat shock.
View Article and Find Full Text PDFSci Rep
January 2025
Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, 66506, USA.
The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).
View Article and Find Full Text PDFNat Commun
January 2025
The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.
View Article and Find Full Text PDFPlanta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!