Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Because articular chondrocyte-based autologous chondrocyte implantations (ACIs) have restrictively restored articular cartilage defects, alternative cell sources as a new therapeutic option for cartilage repair have been introduced.
Purpose: To assess whether implantation of a costal chondrocyte-derived pellet-type (CCP) ACI allows safe, functional, and structural restoration of full-thickness cartilage defects in the knee.
Study Design: Case series; Level of evidence, 4.
Methods: In this first-in-human study, 7 patients with symptomatic, full-thickness cartilage lesions were enrolled. The chondrocytes isolated from the patients' costal cartilage were expanded, followed by 3-dimensional pellet culture to prepare the CCP-ACI. Implantation of the pellets was performed via minimal arthrotomy and secured with a fibrin sealant. Clinical scores, including the International Knee Documentation Committee (IKDC) subjective, Lysholm, and Tegner activity scores, were estimated preoperatively and at 1, 2, and 5 years postoperatively. High-resolution magnetic resonance imaging was also performed to evaluate cartilage repair as well as to calculate the MOCART (magnetic resonance observation of cartilage repair tissue) score.
Results: The costal chondrocytes of all patients formed homogeneous-sized pellets, which showed the characteristics of the hyaline cartilaginous tissue with lacunae-occupied chondrocytes surrounded by glycosaminoglycan and type II collagen-rich extracellular matrix. There were no treatment-related serious adverse events during the 5-year follow-up period. Significant improvements were seen in all clinical scores from preoperative baseline to the 5-year follow-up (IKDC subjective score, 34.67 to 75.86; Lysholm score, 34.00 to 85.33; Tegner activity score, 1.17 to 4.67; and MOCART score, 28.33 to 83.33). Two patients had complete defect filling on magnetic resonance imaging evaluation at 1 year. Moreover, at 5 years postoperatively, complete defect filling was observed in 4 patients, and hypertrophy or incomplete defect filling (50%-100%) was observed in 2 patients.
Conclusion: The overall results of this clinical study suggest that CCP-ACI can emerge as a promising therapeutic option for articular cartilage repair with good clinical outcomes and structural regeneration and with stable results at midterm follow-up.
Registration: NCT03517046 ( ClinicalTrials.gov identifier).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546520905565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!