A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical Investigations of the Dynamics of Chemical Reactions on Nanocatalysts with Multiple Active Sites. | LitMetric

Theoretical Investigations of the Dynamics of Chemical Reactions on Nanocatalysts with Multiple Active Sites.

J Phys Chem Lett

Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy, and Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, Texas 77005, United States.

Published: March 2020

Recent synthetic advances led to the development of new catalytic particles with well-defined atomic structures and multiple active sites, which are called nanocatalysts. Experimental studies of processes at nanocatalysts uncovered a variety of surprising effects, but the molecular mechanisms of these phenomena remain not well understood. We propose a theoretical method to investigate the dynamics of chemical reactions on catalytic particles with multiple active sites. It is based on a discrete-state stochastic description that allows us to explicitly evaluate dynamic properties of the system. It is found that for independently occurring chemical reactions, the mean turnover times are inversely proportional to the number of active sites, showing no stochastic effects. However, the molecular details of reactions and the number of active sites influence the higher moments of reaction times. Our theoretical method provides a way to quantify the molecular mechanisms of processes at nanocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c00316DOI Listing

Publication Analysis

Top Keywords

active sites
20
chemical reactions
12
multiple active
12
dynamics chemical
8
catalytic particles
8
processes nanocatalysts
8
effects molecular
8
molecular mechanisms
8
theoretical method
8
number active
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!