Alzheimer disease (AD) is a leading cause of global burden with great impact on societies. Although research is working intensively on promising therapy, the problem remains up-to-date. Among the various proposed hypotheses regarding causality and therapy, emerging evidence supports the hypothesis that gastrointestinal microbiota through the so-called 'gut-brain axis' interacts with immune system and brain and shape the balance between homeostasis and disease; the involvement of gastrointestinal microbiota in the pathophysiology of AD is less defined, even though the role of 'gut-brain axis' has been well verified for other neurodegenerative conditions. We performed a systematic review of PubMed/MEDLINE database from 1 January 1990 to 17 October 2018, to investigate the accessible literature regarding possible association between AD and gastrointestinal microbiota. Inclusion criteria were available full text in English language, original clinical papers implicating AD patients and any sort of gastrointestinal microbiota. Through our query, an initial number of 241 papers has been identified. After removing duplicates and through an additional manual search, twenty-four papers met our inclusion criteria. The great majority of eligible publications supported a possible connection between AD and gastrointestinal microbiota. The most common investigated microorganism was Our own systematic review, showed a possible association between AD and gastrointestinal microbiota mainly including , and thus further research is required for substantiation of causality as well as for the establishment of promising novel therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2020.1738432 | DOI Listing |
J Med Microbiol
January 2025
Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK.
Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China.
Artificial sweeteners have emerged as popular alternatives to traditional sweeteners, driven by the growing concern over sugar consumption and its associated rise in obesity and metabolic disorders. Despite their widespread use, the safety and health implications of artificial sweeteners remain a topic of debate, with conflicting evidence contributing to uncertainty about their long-term effects. This review synthesizes current scientific evidence regarding the impact of artificial sweeteners on gut microbiota and gastrointestinal health.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Animal Science, Anhui Science and Technology University, Chuzhou, China.
Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!