Rechargeable sodium-ion batteries are the most attractive substitutes for lithium-ion batteries in large-scale energy storage devices due to wide spread reserves and low-cost of sodium resources and the similarities between sodium and lithium chemistry. However, finding a suitable cathode material is still a hurdle to be overcome. To date, Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O has stood out as one of the most promising Na-host materials due to its low cost, facile synthesis and competitive electrochemical capacity. Despite this, there are concerns that this material will thermally decompose at relatively low temperatures to form cyanogen gas, which is a safety hazard. Thus, low vacancy NaxFe[Fe(CN)6]y·nH2O (x = 1.5, 1, 0.5 and 0) has been synthesized, and the influence of x on its thermal behavior systematically investigated. It is demonstrated that the thermal decomposition temperature, water content and moisture sensitivity of the samples strongly depend on the sodium content. The sample with x = 1.5 is found to be the most thermally stable and has the highest water content under the same experimental conditions. In addition, the sodium-rich samples (x = 1.5, 1 and 0.5) have higher surface water than the sodium-deficient one (x = 0). The local structure for this sample is also very different to the sodium-rich ones. Our findings offer new insights into the profound implications of proper material handling and safer operating conditions for practical Na-ion batteries and may be extended to analogous systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt00014k | DOI Listing |
Environ Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xin min Street, Changchun, 130021, China.
Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFSci Rep
January 2025
Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!