Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-quality nanoporous anodic alumina gradient-index filters (NAA-GIFs) are realized by sinusoidal pulse anodisation (SPA) of aluminum. A three-level factorial design of experiments is used to determine the effect of three critical anodization parameters -electrolyte temperature, concentration of the electrolyte and anodization time- on the quality of light control in these photonic crystal (PC) structures. Quantitative analysis of the effect of these anodization parameters on the quality of the characteristic photonic stopband (PSB) of NAA-GIFs reveals that all three anodization parameters and their respective combinations have statistically significant effects. However, anodization time is found to have the highest impact on the quality of light control in NAA-GIFs, followed by the electrolyte concentration and its temperature. Our findings demonstrate that NAA-GIFs fabricated under optimal conditions achieve an outstanding quality factor of ∼86 (i.e.∼18% superior to that of other NAA-based PCs reported in the literature). This study provides new insight into optimal anodization conditions to fabricate high-quality NAA-based PC structures, opening new exciting opportunities to integrate these nanoporous PCs as platform materials for light-based technologies requiring a precise control over photons such as ultra-sensitive optical sensors and biosensors, photocatalysts for green energy generation and environmental remediation, optical encoding and lasing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr10526c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!