Objective: Introduction: One of the areas of the Internet of Things (further IoT) popularisation is medicine. Along with significant progress in this area, cyber security threats are on the rise. Thus, the issue of IoT technology's scientific understanding in medicine is of particular relevance. The aim: The purpose of the study is to analyze the global tendencies of IoT development in medicine, identify major threats and define priority areas for their localization and prevention.

Patients And Methods: Materials and methods: The materials were primarily international standards, norms of international and national law, analysis of international companies' activities. The theoretical basis was the IoT researches of A. Ross, O. Baranov, V. Vishnevsky. General theoretical (epistemological, functional-structural) and special (comparative, inductive) methods of research were used.

Conclusion: Conclusions: It has been proven that security and privacy issues are one of the main obstacles to IoT development. Specific recommendations for IoT developers in the medical field are proposed, which should include flexible standards, clear rules, and strict obligations with severe penalties for violations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

internet things
8
cyber security
8
iot development
8
methods materials
8
iot
6
things technologies
4
technologies medical
4
medical sector
4
sector cyber
4
security issues
4

Similar Publications

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies.

View Article and Find Full Text PDF

Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.

View Article and Find Full Text PDF

Web Real-Time Communications-Based Unmanned-Aerial-Vehicle-Borne Internet of Things and Stringent Time Sensitivity: A Case Study.

Sensors (Basel)

January 2025

Institute of Telecommunications, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!