Background: High-resolution colonic manometry gives an unprecedented window into motor patterns of the human colon. Our objective was to characterize motor activities throughout the entire colon that possessed persistent rhythmicity and spanning at least 5 cm.
Methods: High-resolution colonic manometry using an 84-channel water-perfused catheter was performed in 19 healthy volunteers. Rhythmic activity was assessed during baseline, proximal balloon distention, meal, and bisacodyl administration.
Key Results: Throughout the entire colon, a cyclic motor pattern occurred either in isolation or following a high-amplitude propagating pressure wave (HAPW), consisting of clusters of pressure waves at a frequency centered on 11-13 cycles/min, unrelated to breathing. The cluster duration was 1-6 minutes; the pressure waves traveled for 8-27 cm, lasting 5-8 seconds. The clusters itself could be rhythmic at 0.5-2 cpm. The propagation direction of the individual pressure waves was mixed with >50% occurring simultaneous. This high-frequency cyclic motor pattern co-existed with the well-known low-frequency cyclic motor pattern centered on 3-4 cpm. In the rectum, the low-frequency cyclic motor pattern dominated, propagating predominantly in retrograde direction. Proximal balloon distention, a meal and bisacodyl administration induced HAPWs followed by cyclic motor patterns.
Conclusions And Inferences: Within cyclic motor patterns, retrograde propagating, low-frequency pressure waves dominate in the rectum, likely keeping the rectum empty; and mixed propagation, high-frequency pressure waves dominate in the colon, likely promoting absorption and storage, hence contributing to continence. Propagation and frequency characteristics are likely determined by network properties of the interstitial cells of Cajal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nmo.13807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!