The balance between nitrate respiration pathways, denitrification and dissimilatory nitrate (NO ) reduction to ammonium (DNRA), determines whether bioavailable nitrogen is removed as N gas or recycled as ammonium. Saltwater intrusion and organic matter enrichment may increase sulphate reduction leading to sulphide accumulation. We investigated the effects of sulphide on the partitioning of NO between complete denitrification and DNRA and the microbial communities in salt marsh sediments. Complete denitrification significantly decreased with increasing sulphide, resulting in an increase in the contribution of DNRA to NO respiration. Alternative fates of NO became increasingly important at higher sulphide treatments, which could include N O production and/or transport into intracellular vacuoles. Higher 16S transcript diversity was observed in the high sulphide treatment, with clear shifts in composition. Generally, low and no sulphide, coupled with high NO , favoured the activity of Campylobacterales, Oceanospirillales and Altermonadales, all of which include opportunistic denitrifiers. High ∑sulphide conditions promoted the activity of potential sulphide oxidizing nitrate reducers (Desulfobulbaceae, Acidiferrobacteraceae and Xanthomonadales) and sulphate reducers (Desulfomonadaceae, Desulfobacteraceae). Our study highlights the tight coupling between N and S cycling, and the implications of these dynamics on the fate of bioavailable N in coastal environments susceptible to intermittent saltwater inundation and organic matter enrichment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.14969 | DOI Listing |
Environ Res
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China. Electronic address:
Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
" Accumulibacter" is a unique and pivotal genus of polyphosphate-accumulating organisms prevalent in wastewater treatment plants and plays mainstay roles in the global phosphorus cycle. However, the efforts to fully understand their genetic and metabolic characteristics are largely hindered by major limitations in existing sequence-based annotation methods. Here, we reported an integrated approach combining pangenome analysis, protein structure prediction and clustering, and meta-omic characterization, to uncover genetic and metabolic traits previously unexplored for .
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Division of Biotechnology, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
We report here the complete genome sequence of sp. strain OS1-2, a bacterium isolated from apple orchard soil and possessing a complete set of denitrification functional genes in its genome. The isolate was observed to perform denitrification under aerobic and anaerobic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!