The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43032-020-00161-2 | DOI Listing |
Medicine (Baltimore)
January 2025
Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin, Guangxi, China.
Rationale: This study investigates the genetic cause of primary infertility and short stature in a woman, focusing on maternal X chromosome pericentric inversion and its impact on offspring genetic outcomes, including deletions at Xp22.33 and Xp22.33p11.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Background: Preeclampsia is a severe, multisystem complication that affects 2%-5% of pregnancies, and is a leading cause of fetal and maternal morbidity and mortality worldwide. Preeclampsia may have devastating results on maternal health and may affect offspring's immediate and long-term health. Previous studies have examined the impact of maternal preeclampsia on the long-term health outcomes of offspring, many of these studies have been limited by confounding factors that could bias the results.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFJ Hypertens
December 2024
Institute for Fetology, The First Affiliated Hospital of Soochow University, Jiangsu.
Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.
Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!