AI Article Synopsis

Article Abstract

Purpose: The preimplantation genetic testing for monogenic defects (PGT-M) is a beneficial strategy for the patients suffering from a Mendelian disease, which could protect their offspring from inheriting the disease. The purpose of this study is to report the effectiveness of PGT-M based on karyomapping for three cases of dynamic mutation diseases with trinucleotide repeat expansion.

Methods: PGT-M was carried out on three couples, whose family members were diagnosed with Huntington's disease or spinocerebellar ataxias 2 or 12. The whole genome amplification was obtained using the multiple displacement amplification (MDA) method. Then, karyomapping was performed to detect the allele that is carrying the trinucleotide repeat expansion using single nucleotide polymorphism (SNP) linkage analyses, and the copy number variations (CNVs) of the embryos were also identified. Prenatal diagnosis was performed to validate the accuracy of PGT-M.

Results: PGT-M was successfully performed on the three couples, and they accepted the transfers of euploid blastocysts without the relevant pathogenic allele. The clinical pregnancies were acquired and the prenatal diagnosis of the three families confirmed the effectiveness of karyomapping. The three born babies were healthy and free of the pathogenic alleles HTT, ATXN2, or PPP2R2B corresponding to Huntington's disease, spinocerebellar ataxias 2 or 12, respectively.

Conclusion: This study shows that karyomapping is a highly powerful and efficient approach for dynamic mutation detection in preimplantation embryos. In this work, we first report the birth of healthy babies that are free of the pathogenic gene for dynamic mutation diseases in patients receiving PGT-M by karyomapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125288PMC
http://dx.doi.org/10.1007/s10815-020-01718-5DOI Listing

Publication Analysis

Top Keywords

dynamic mutation
16
mutation diseases
12
preimplantation genetic
8
genetic testing
8
three cases
8
karyomapping three
8
trinucleotide repeat
8
three couples
8
huntington's disease
8
disease spinocerebellar
8

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Prognostic Value of Dynamic Measurable Residual Disease Monitoring by Multiflowcytometry in Elderly Patients With Nonintensively Treated Acute Myeloid Leukemia.

Clin Lymphoma Myeloma Leuk

January 2025

Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:

Purpose: The clinical prognostic value of monitoring minimal residual disease (MRD) in acute myeloid leukemia (AML) patients undergoing nonintensive treatment remains insufficiently established. The aim of this work was to examine MRD status at various time points, highlighting the potential for pre-emptive therapy to improve patient outcomes.

Methods: Inpatient data from 2017 to 2024 were used in this retrospective study.

View Article and Find Full Text PDF

Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids.

Biosens Bioelectron

January 2025

Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:

Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!