The discovery of liquid crystalline (LC) phases in dispersions of two-dimensional (2D) materials has enabled the development of macroscopically aligned three-dimensional (3D) macrostructures. Here, we report the first experimental observation of self-assembled LC phases in aqueous TiCT MXene inks without using LC additives, binders, or stabilizing agents. We show that the transition concentration from the isotropic to nematic phase is influenced by the aspect ratio of MXene flakes. The formation of the nematic LC phase makes it possible to produce fibers from MXenes using a wet-spinning method. By changing the TiCT flake size in the ink formulation, coagulation bath, and spinning parameters, we control the morphology of the MXene fibers. The wet-spun TiCT fibers show a high electrical conductivity of ∼7750 S cm, surpassing existing nanomaterial-based fibers. A high volumetric capacitance of ∼1265 F cm makes TiCT fibers promising for fiber-shaped supercapacitor devices. We also show that TiCT fibers can be used as heaters. Notably, the nematic LC phase can be achieved in other MXenes (MoTiCT and TiCT ) and in various organic solvents, suggesting the widespread LC behavior of MXene inks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047439 | PMC |
http://dx.doi.org/10.1021/acscentsci.9b01217 | DOI Listing |
Phys Rev Lett
December 2024
Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting.
View Article and Find Full Text PDFNat Commun
January 2025
Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor BaKFeAs to the hole-doping regime beyond KFeAs by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped BaKFeAs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
In biological systems such as cells, the macromolecules, which are anisotropic particles, diffuse in a crowded medium. In the present work, we have studied the diffusion of spheroidal particles diffusing between cylindrical obstacles by varying the density of the obstacles as well as the spheroidal particles. Analytical calculation of the free energy showed that the orientational vector of a single oblate particle will be aligned perpendicular, and a prolate particle will be aligned parallel to the symmetry axis of the cylindrical obstacles in equilibrium.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, University of Hull, Hull HU6 7RX, UK. Electronic address:
Circular dichroism mapping (CDM) method was introduced by utilizing the highly collimated light beam of synchrotron radiation (SR) available at Diamond Light Source B23 beamline for scanning the thin films of the N phase. We apply SR-CDM to two achiral dimeric materials exhibiting the N phase: symmetric DTC5C9 and dissymmetric DTC5C9CB. The SR-CDM measurements directly capture the chiral information in the local N domains, providing the ultimate complement to the theoretical predictions of the helical structures: the spontaneous symmetry breaking in N phase is ambidextrous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!