Wood-decomposition in terrestrial ecosystems is a very important process with huge ecologic consequences. This decomposition process is a combination of biological respiration, leaching and fragmentation, mainly triggered by organismic activities. In order to gain a deeper insight into these microbial communities and their role in deadwood decay, we used metaproteomics. Metaproteomics is an important tool and offers the ability to characterize the protein complement of environmental microbiota at a given point in time. In this dataset, we provide data of an exemplary beech wood log and applied different extraction methods to provide the proteome profile of beech dead wood and their corresponding fungal-bacterial community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038588 | PMC |
http://dx.doi.org/10.1016/j.dib.2020.105285 | DOI Listing |
Pediatr Crit Care Med
January 2025
Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom.
Objectives: A conservative oxygenation strategy is recommended in adult and pediatric guidelines for the management of acute respiratory distress syndrome to reduce iatrogenic lung damage. In the recently reported Oxy-PICU trial, targeting peripheral oxygen saturations (Spo2) between 88% and 92% was associated with a shorter duration of organ support and greater survival, compared with Spo2 greater than 94%, in mechanically ventilated children following unplanned admission to PICU. We investigated whether this benefit was greater in those who had severely impaired oxygenation at randomization.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland. Electronic address:
Tree-related Microhabitats (TreMs) are essential for sustaining forest biodiversity. Although TreMs represent ephemeral resources that are spread across the landscape, their spatial distribution within temperate forests remains poorly understood. To address this knowledge gap, we conducted a study on 90 sample plots (0.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan.
Oak wilt causes severe dieback of Quercus serrata, a dominant tree species in the lowlands across Japan. This study evaluated the effects of oak wilt on the wood-inhabiting fungal community and the decay rate of deadwood using a field monitoring experiment. We analysed the fungal metabarcoding community from 1200 wood samples obtained from 120 experimental logs from three forest sites at five different time points during the initial 1.
View Article and Find Full Text PDFTree Physiol
January 2025
Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.
View Article and Find Full Text PDFEcol Evol
October 2024
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems College of the Environment & Ecology, Xiamen University Xiamen China.
, a rare and endangered endemic tree species, is found exclusively in subtropical regions of China. Understanding the population structure and temporal dynamics of is pivotal for effective conservation and restoration of its populations and associated ecosystems. However, large knowledge gaps remain about its population structure and temporal change and its key demographic rates across size classes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!