The main aim of this study is to analyze the solid-liquid extraction followed by spray drying as a technological pathway for utilization of aronia fruit dust, a byproduct of filter tea factory. In the current study, ultrasound-assisted extraction was applied for the production of aronia liquid feed and maltodextrin was used as a carrier and encapsulating agent. In spray drying, the influence of inlet temperature and maltodextrin type and mass fraction on process efficiency and powder properties were observed. The physical and chemical properties of the obtained powders were characterized. It was determined that the powder produced using inlet temperature 140 °C and 40% maltodextrin with dextrose equivalent (DE) 19.7 had the most desirable characteristics. It was observed that the increase in maltodextrin mass fraction decreases the powder moisture content, hygroscopicity and the content of bioactive compounds, but increases water solubility index and particle size. The increase in dextrose equivalent of maltodextrin increases the powder hygroscopicity and water solubility index, while the increase of inlet temperature causes a decrease in moisture content of aronia powders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029385 | PMC |
http://dx.doi.org/10.17113/ftb.57.04.19.6369 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!