D-lactic acid (DLA) serves as a key monomer enhancing both the mechanical and thermal properties of Poly(lactic) acid films and coatings, extensively used in the food packaging industry. Economically viable production of optically pure DLA by NBRC3202 was achieved using a low-cost carbon source, Kodo millet bran residue hydrolysate (KMBRH) and nitrogen source (casein enzyme hydrolysate (CEH) resulting in a high DLA yield of 0.99 g g and KMBRH conversion to final product (95.3%). The optimum values for kinetic parameters viz., specific growth rate (0.11 h), yield coefficient of biomass on KMBRH (0.10 g g) and DLA productivity (0.45 g L h) were achieved at 5 g L of CEH dosage under controlled pH environment. A comparative study and kinetic analysis of different neutralizing agents (NaOH, NH, CaCO and NaHCO) under pH controlled environment for KMBRH based DLA production was addressed effectively through bioreactor scale experiments. Maximum cell concentration (1.29 g L) and DLA titer (45.08 g L) were observed with NH as a neutralizing agent. Kinetic analysis of DLA production under different neutralization agents demonstrated that the logistic derived model predicted biomass growth, KMBRH consumption and DLA production efficiently ( > 0.92).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026326 | PMC |
http://dx.doi.org/10.1007/s13197-019-04124-7 | DOI Listing |
PLoS One
January 2025
Department of Biology, Middlebury College, Middlebury, Vermont, United States of America.
Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!