A model study of terraced riverbeds as novel ecosystems.

Sci Rep

Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 8499000, Israel.

Published: March 2020

Riverbed terracing has been introduced in ancient times to retain water and soil, to reduce hydrological connectivity and erosion and to increase primary and secondary productivity of agro-ecological systems. These presently abandoned human-made landscapes have become novel ecosystems and a potential source of ecosystem services to humans in drylands. We use a mathematical-modeling approach to study factors that regulate terraced riverbeds and affect community and ecosystem attributes such as productivity, functional diversity and resilience to droughts. We introduce a model that captures the relationships between rainfall pattern, runoff coupling between adjacent terraces, and vegetation growth, taking into account competition for water and light. We found that a large number of weak rainfall events results in lower total biomass and functional diversity across the terraced riverbed compared with a few strong rainfall events. We further analyzed the filtering of species traits from pools of functional groups that make different tradeoffs between investment in above-ground biomass to capture canopy resources and investment in below-ground biomass to capture soil resources. Pools characterized by concave tradeoffs give rise to higher functional diversity, lower biomass production and lower resilience to droughts, as compared with convex pools. New empirical studies are needed to test these model predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052233PMC
http://dx.doi.org/10.1038/s41598-020-60706-yDOI Listing

Publication Analysis

Top Keywords

functional diversity
12
terraced riverbeds
8
novel ecosystems
8
resilience droughts
8
rainfall events
8
biomass capture
8
model study
4
study terraced
4
riverbeds novel
4
ecosystems riverbed
4

Similar Publications

The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!