When nutrients become scarce, bacteria can enter an extended state of quiescence. A major challenge of this state is how to preserve ribosomes for the return to favorable conditions. Here, we show that the ribosome dimerization protein hibernation-promoting factor (HPF) functions to protect essential ribosomal proteins. Ribosomes isolated from strains lacking HPF (Δ) or encoding a mutant allele of HPF that binds the ribosome but does not mediate dimerization were substantially depleted of the small subunit proteins S2 and S3. Strikingly, these proteins are located directly at the ribosome dimer interface. We used single-particle cryo-electron microscopy (cryo-EM) to further characterize these ribosomes and observed that a high percentage of ribosomes were missing S2, S3, or both. These data support a model in which the ribosome dimerization activity of HPF evolved to protect labile proteins that are essential for ribosome function. HPF is almost universally conserved in bacteria, and HPF deletions in diverse species exhibit decreased viability during starvation. Our data provide mechanistic insight into this phenotype and establish a mechanism for how HPF protects ribosomes during quiescence. The formation of ribosome dimers during periods of dormancy is widespread among bacteria. Dimerization is typically mediated by a single protein, hibernation-promoting factor (HPF). Bacteria lacking HPF exhibit strong defects in viability and pathogenesis and, in some species, extreme loss of rRNA. The mechanistic basis of these phenotypes has not been determined. Here, we report that HPF from the Gram-positive bacterium preserves ribosomes by preventing the loss of essential ribosomal proteins at the dimer interface. This protection may explain phenotypes associated with the loss of HPF, since ribosome protection would aid survival during nutrient limitation and impart a strong selective advantage when the bacterial cell rapidly reinitiates growth in the presence of sufficient nutrients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186458 | PMC |
http://dx.doi.org/10.1128/JB.00009-20 | DOI Listing |
Neural Regen Res
January 2025
Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity.
View Article and Find Full Text PDFChem Sci
November 2024
Department of Chemistry, University of Rochester Rochester NY 14627 USA.
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!