Purpose: Several aggressive pediatric cancers harbor alterations in , including rhabdoid tumors, epithelioid sarcoma, and chordoma. As tumor profiling has become more routine in clinical care, we investigated the relationship between genetic variants identified by next-generation sequencing (NGS) and INI1 protein expression. Therapeutic approaches for INI1-deficient tumors are limited. Early reports suggest a potential role for immune checkpoint inhibition in these patients. Thus, we also investigated PD-L1 and CD8 expression in INI1-negative pediatric brain and solid tumors.

Experimental Design: We performed immunohistochemistry (IHC) for INI1 and immune markers (PD-L1, CD8, and CD163) and NGS on tumor samples from 43 pediatric patients who had tumors with INI1 loss on previous IHC or genomic alterations on prior somatic sequencing.

Results: two-copy deletions and inactivating mutations on NGS were associated with loss of INI1 protein expression. Single-copy deletion of was not predictive of INI1 loss in tumor histologies not known to be INI1-deficient. In the 27 cases with INI1 loss and successful tumor sequencing, 24 (89%) had a alteration detected. In addition, 47% (14/30) of the patients with INI1-negative tumors had a tumor specimen that was PD-L1 positive and 60% (18/30) had positive or rare CD8 staining. We report on 3 patients with INI1-negative tumors with evidence of disease control on immune checkpoint inhibitors.

Conclusions: A significant proportion of the INI1-negative tumors express PD-L1, and PD-L1 positivity was associated with extracranial tumor site. These results suggest that clinical trials of immune checkpoint inhibitors are warranted in INI1-negative pediatric cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947260PMC
http://dx.doi.org/10.1158/1078-0432.CCR-19-3089DOI Listing

Publication Analysis

Top Keywords

pediatric cancers
12
immune checkpoint
12
ini1 loss
12
ini1-negative tumors
12
ini1 protein
8
protein expression
8
pd-l1 cd8
8
ini1-negative pediatric
8
patients ini1-negative
8
tumors
6

Similar Publications

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Aim: To carry out a detailed study of existing positions in the French public of the acceptability of refusing treatment because of alleged futility, and to try to link these to people's age, gender, and religious practice.

Method: 248 lay participants living in southern France were presented with 16 brief vignettes depicting a cancer patient at the end of life who asks his doctor to administer a new cancer treatment he has heard about. Considering that this treatment is futile in the patient's case, the doctor refuses to prescribe it.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Classification of Fibro-osseous Tumors in the Craniofacial Bones using DNA Methylation and Copy Number Alterations.

Mod Pathol

January 2025

Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:

Fibro-osseous tumors of the craniofacial bones are a heterogeneous group of lesions comprising cemento-osseous dysplasia (COD), cemento-ossifying fibroma (COF), juvenile trabecular ossifying fibroma (JTOF), psammomatoid ossifying fibroma (PsOF), fibrous dysplasia (FD), and low-grade osteosarcoma (LGOS) with overlapping clinicopathological features. However, their clinical behavior and treatment differ significantly, underlining the need for accurate diagnosis. Molecular diagnostic markers exist for subsets of these tumors, including GNAS mutations in FD, SATB2 fusions in PsOF, mutations involving the RAS-MAPK signaling pathway in COD, and MDM2 amplification in LGOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!