Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Th17 cells, known as a highly pro-inflammatory subtype of Th cells, are involved very early in numerous aspects of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) neuropathology. A crucial event for the formation and accumulation of MS lesions is represented by the disruption of the blood brain barrier (BBB) in relapsing-remitting MS. Th17 cells also contribute to the progression of MS/EAE. These events will allow for the passage of inflammatory cells into the brain. Secondary to this, increased recruitment of neutrophils occurs, followed by increased protease activity that will continue to attract macrophages and monocytes, leading to brain inflammation with sustained myelin and axon damage. This review focuses mainly on the role of Th17 cells in penetrating the BBB and on their important effects on BBB disruption via their main secretion products, IL-17 and IL-22. We present the morphological aspects of Th17 cells that allow for intercellular contacts with BBB endothelial cells and the functional/secretory particularities of Th17 cells that allow for intercellular communications that enhance Th17 entry into the CNS. The cytokines and chemokines involved in these processes are described. In conclusion, Th17 cells can efficiently cross the BBB using pathways distinct from those used by Th1 cells, leading to BBB disruption, the activation of other inflammatory cells and neurodegeneration in MS patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humimm.2020.02.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!