Genetic diversity among cultivated beets (Beta vulgaris) assessed via population-based whole genome sequences.

BMC Genomics

USDA-ARS, Sugarbeet and Bean Research Unit, 1066 Bogue Street, 494 PSSB, East Lansing, MI, 48824, USA.

Published: March 2020

Background: Diversification on the basis of utilization is a hallmark of Beta vulgaris (beet), as well as other crop species. Often, crop improvement and management activities are segregated by crop type, thus preserving unique genome diversity and organization. Full interfertility is typically retained in crosses between these groups and more traits may be accessible if the genetic basis of crop type lineage were known, along with available genetic markers to effect efficient transfer (e.g., via backcrossing). Beta vulgaris L. (2n =18) is a species complex composed of diverged lineages (e.g., crop types), including the familiar table, leaf (chard), fodder, and sugar beet crop types. Using population genetic and statistical methods with whole genome sequence data from pooled samples of 23 beet cultivars and breeding lines, relationships were determined between accessions based on identity-by-state metrics and shared genetic variation among lineages.

Results: Distribution of genetic variation within and between crop types showed extensive shared (e.g. non-unique) genetic variation. Lineage specific variation (e.g. apomorphy) within crop types supported a shared demographic history within each crop type, while principal components analysis revealed strong crop type differentiation. Relative contributions of specific chromosomes to genome wide differentiation were ascertained, with each chromosome revealing a different pattern of differentiation with respect to crop type. Inferred population size history for each crop type helped integrate selection history for each lineage, and highlighted potential genetic bottlenecks in the development of cultivated beet lineages.

Conclusions: A complex evolutionary history of cultigroups in Beta vulgaris was demonstrated, involving lineage divergence as a result of selection and reproductive isolation. Clear delineation of crop types was obfuscated by historical gene flow and common ancestry (e.g. admixture and introgression, and sorting of ancestral polymorphism) which served to share genome variation between crop types and, likely, important phenotypic characters. Table beet was well differentiated as a crop type, and shared more genetic variation within than among crop types. The sugar beet group was not quite as well differentiated as the table beet group. Fodder and chard groups were intermediate between table and sugar groups, perhaps the result of less intensive selection for end use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053042PMC
http://dx.doi.org/10.1186/s12864-020-6451-1DOI Listing

Publication Analysis

Top Keywords

crop type
28
crop types
28
beta vulgaris
16
crop
16
genetic variation
16
variation crop
12
genetic
9
beet well
8
sugar beet
8
shared genetic
8

Similar Publications

Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants.

Plant Biotechnol J

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China.

The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5'-TTN-3' protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease.

View Article and Find Full Text PDF

ABA-auxin cascade regulates crop root angle in response to drought.

Curr Biol

January 2025

Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops.

View Article and Find Full Text PDF

Chromatin Accessibility Mediated by CHROMATIN REMODELING 11 Promotes Chilling Tolerance in Rice.

Plant Physiol

January 2025

The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.

Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.

View Article and Find Full Text PDF

Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

A Cytosolic Phosphoglucose Isomerase, OsPGI1c, Enhances Plant Growth and Herbivore Resistance in Rice.

Int J Mol Sci

December 2024

State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!