This study was conducted to compare the in vitro proliferation and osteogenic differentiation potential of mesenchymal stem cells (MSCs) derived from mandibular (M-MSCs) or femur (F-MSCs) tissues of rats. M-MSC and F-MSC cultures were isolated and established from the same rat. Cultures were observed for morphological changes by microscope and growth characteristics by CCK-8 and cloning assays. Cell adhesion ability on a culture plate and titanium sheet was detected by staining with toluidine blue and Hoechst 33258, respectively. The levels of Ca, P, and ALP (serially) during osteogenic differentiation were evaluated. Cultures were analyzed for mineralization potential with alizarin red and ALP staining methods and for differentiation markers with RT-PCR (, , and ). M-MSCs and F-MSCs were successfully isolated from the same rat with uncontaminated culture, which showed significant differences in morphology. The proliferation rate of M-MSCs was higher than F-MSCs in primary culture, but significantly lower after passage. More colonies are formed from F-MSCs than from M-MSCs. M-MSCs showed a significantly higher mineralization and osteogenic differentiation potential, which might be of significance for use in bone/dental tissue engineering. In vitro, cell passage will decrease the proliferation ability of M-MSCs. The higher mineralization and osteogenic differentiation potential of M-MSCs could make them an approachable stem cell source for further application in stem cell-based clinical therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2019.0256 | DOI Listing |
Dent Mater
January 2025
Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Innovative biomaterials and tissue engineering strategies show great promise in regenerating periodontal tissues. This guidance provides an overview and detailed recommendations for evaluating the biological functionality of these new biomaterials in vitro, focusing on mineralization, immunomodulatory effects, cellular differentiation, and angiogenesis. Additionally, it discusses the use of in vivo experimental models that mimic periodontitis and scrutinizes methods such as osteogenic differentiation, immunomodulation, and anti-inflammatory responses to assess the effectiveness of these biomaterials in promoting periodontal tissue reconstruction.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China. Electronic address:
In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032 China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006 China. Electronic address:
Emodin (ED), as a traditional Chinese medicine, possesses a variety of biological activities and is also one of natural sonosensitizer. Whether emodin could react with titanium dioxide to enhance the sonodynamic activity for safely treating osteomyelitis remains to be explored. Hence, an ED-conjugated Mn-doped titanium dioxide (TOM) nanorod array is designed and prepared on titanium to eliminate bacterial infections under ultrasound (US) treatment.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!