We report a novel Nd and Eu co-doped SrSnO (SSONE) phosphor showing the capability of "write-in" and "read-out" in optical information storage. As-prepared phosphors exhibit a dominant emission (PL) band centered at 596 nm under UV excitation, closely identical with its photo-stimulated luminescence (PSL) spectrum center (595 nm) upon near-infrared (NIR) light and thermal-stimulated luminescence (TSL) spectrum center (595 nm) under heat source. Remarkably, compared with Eu single-doped phosphors, the co-doping strategy enhances the deep traps and also separates the deep traps with shallow traps, which are very crucial factors for optical information storage in electron trapping materials. Further, a demonstration confirmed the optical information storage capacity by photo- and thermal-stimulating the prepared phosphors filled in the designed patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.386164 | DOI Listing |
Microsyst Nanoeng
January 2025
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Ministry of Education, 100081, Beijing, China.
Recently, the biologically inspired intelligent artificial visual neural system has aroused enormous interest. However, there are still significant obstacles in pursuing large-scale parallel and efficient visual memory and recognition. In this study, we demonstrate a 28 × 28 synaptic devices array for the artificial visual neuromorphic system, within the size of 0.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang Area, Shanghai 200240, Shanghai, 200240, CHINA.
Both stability and multi-level switching are crucial performance aspects for resistive random-access memory (RRAM), each playing a significant role in improving overall device performance. In this study, we successfully integrate these two features into a single RRAM configuration by embedding Ag-nanoparticles (Ag-NPs) into the TiN/Ta2O5/ITO structure. The device exhibits substantially lower switching voltages, a larger switching ratio, and multi-level switching phenomena compared to many other nanoparticle-embedded devices.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia.
This study investigates the optimization of four gluten free flours namely sorghum, rice, teff flours, and 3% flaxseed flour blends to enhance the quality , which was traditionally baked with only pure teff. Utilizing a D-optimal mixture design, ratios were varied (sorghum 43%-50%, rice 20%-27%, teff 23%-30%). Methods followed AOAC and AACC standards, analyzed using Minitab 19.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Key Laboratory for UV Light-Emitting Materials and Technology (Ministry of Education), College of Physics, Northeast Normal University, Changchun, China.
The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, CuO exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse.
View Article and Find Full Text PDFNanoscale
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!