Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionr56ncjdgo1ip3o1hospf4mbrva6du4s8): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the subtle structure, the exact geometry parameters of the focused plenoptic camera cannot be retrieved after packaging, which leads to inaccurate light field processing such as visible artifacts in the rendering images. This paper proposes a novel blind calibration method to calculate the geometry parameters for the focused plenoptic cameras with high precision. It translates the problem of deriving the value of the geometry parameters to be the problem of deriving the pixel patch-size of each micro-image used in subaperture image rendering based on the geometry projection of the relay imaging process in the focused plenoptic camera. Then, a dark image calibration algorithm is proposed to retrieve the position and the geometry parameters of the MLA for subaperture image rendering. A triple-level calibration board with random texture is designed to realize focus plane confirming blindly, to facilitate capturing light field images at different object distances via a single shot and to benefit intensity feature matching in determining the rendering patch size. The rendering patch-size is found by the proposed Gradient-SSIM-based fractional-pixel matching based on the geometry projection analysis. Experiments conducted on the simulated data and the real imaging system demonstrate that the proposed method can acquire the geometry parameters with high accuracy and is robust to different focused plenoptic cameras.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.381717 | DOI Listing |
By inserting a microlens array (MLA) between the main lens and imaging sensor, plenoptic cameras can capture 3D information of objects via single-shot imaging. However, for an underwater plenoptic camera, a waterproof spherical shell is needed to isolate the inner camera from the water, thus the performance of the overall imaging system will change due to the refractive effects of the waterproof and water medium. Accordingly, imaging properties like image clarity and field of view (FOV) will change.
View Article and Find Full Text PDFThe emerging data, varifocal multiview (VFMV) has an exciting prospect in immersive multimedia. However, the distinctive data redundancy of VFMV derived from dense arrangements and blurriness differences among views causes difficulty in data compression. In this paper, we propose an end-to-end coding scheme for VFMV images, which provides a new paradigm for VFMV compression from data acquisition (source) end to vision application end.
View Article and Find Full Text PDFThe plenoptic function is ideal to describe three-dimensional displays. We propose and demonstrate in this work that plenoptic function is a particularly suitable scenario in the directionally illuminated autostereoscopic display. Guided by this function, backlight structures and functional thin films are designed and applied for wave-vector and amplitude control so that homogeneous viewing is achieved in large viewing volume while display functionality with optical focusing and diverting can be fulfilled.
View Article and Find Full Text PDFFocal stack cameras are capable of capturing a stack of images focused at different spatial distance, which can be further integrated to present a depth of field (DoF) effect beyond the range restriction of conventional camera's optics. To date, all of the proposed focal stack cameras are essentially 2D imaging architecture to shape 2D focal stacks with several selected focal lengths corresponding to limited objective distance range. In this paper, a new type of electrically addressed focal stack plenoptic camera (EAFSPC) based on a functional liquid-crystal microlens array for all-in-focus imaging is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.