Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a one-step scheme for implementing multi-qubit phase gates on microwave photons in multiple resonators mediated by a superconducting bus in circuit quantum electrodynamics (QED) system. In the scheme, multiple single-mode resonators carry quantum information with their vacuum and single-photon Fock states, and a multi-level artificial atom acts as a quantum bus which induces the indirect interaction among resonators. The method of pulse engineering is used to shape the coupling strength between resonators and the bus so as to improve the fidelity and robustness of the scheme. We also discuss the influence of finite coherence time for the bus and resonators on gate fidelity respectively. Finally, we consider the suppression of unwanted transitions and propose the method of optimized detuning compensation for offsetting unwanted transitions, showing the feasibility of the scheme within the current experiment technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.384352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!