A miniature fiber-optic tip Fabry-Perot (FP) pressure sensor with excellent high-temperature survivability, assembled by hydroxide catalysis bonding (HCB) technology, is proposed and experimentally demonstrated. A standard single-mode fiber is fusion spliced to a fused silica hollow tube with an outer diameter (OD) of 125 µm, and a 1-µm-thick circular silicon diaphragm with a diameter slightly larger than the OD is bonded to the other endface of the hollow tube by HCB technology. The ultrathin silicon diaphragm is prepared on a silicon-on-insulator (SOI) wafer produced by microelectromechanical systems (MEMS), providing the capability of large-scale mass production. The HCB technology enables a polymer-free bonding between diaphragm and hollow tube on fiber tip with the obvious advantages of high alignment precision, normal pressure and temperature (NPT) operation, and reliable effectiveness. The static pressure and temperature response of the proposed sensor are discussed. Results show that the sensor has a measurable pressure range of 0∼100 kPa, which is well consistent with the measurement range of biological blood pressure. The pressure sensitivity is up to 2.13 nm/kPa with a resolution of 0.32% (0.32kPa). Besides, the sensor possesses a unique high-temperature resistant capability up to 600 °C, which can easily survive even in high-temperature sterilization processes, and it has a low temperature dependence of 0.09 kPa/°C due to the induced HCB bonding technology and the silicon-based diaphragm. Thus, the proposed fiber tip pressure sensor is desirable for invasive biomedical pressure diagnostics and pressure monitoring in related harsh environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.380589 | DOI Listing |
Crit Rev Biotechnol
January 2025
Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India.
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of ( emphasizes the critical requirement for novel potent drugs. The demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host.
View Article and Find Full Text PDFGait Posture
January 2025
Saarland University, Im Stadtwald B8.2, Saarbrücken D-66123, Germany; Texas A&M University, College Station, TX 77845, United States. Electronic address:
Background: Force plates are used to measure postural control. However, force plates differ with regard to the type of sensors and the position of the sensors. The purpose of the study was to introduce a method for testing the comparability of two force plates with different force transducers regarding their center of pressure (CoP) capturing.
View Article and Find Full Text PDFHum Mov Sci
January 2025
Sports Physical Therapy Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece. Electronic address:
Introduction: Breathing and postural control is reported to be both neuromuscularly and mechanically interdependent. To date, the effects of voluntary abdominal and thoracic breathing (VAB and VTB) on the EMG activity of muscles involved in both respiratory and postural functions, as well as gait biomechanics related to these breathing patterns, have not been investigated in young, healthy adults. The aim of the study was to evaluate the EMG responses of neck and trunk muscles, as well as the kinematic, stability, and kinetic parameters of gait induced by VAB and VTB compared to involuntary breathing (INB).
View Article and Find Full Text PDFSci Adv
January 2025
Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
Inspired by human skin, bionic tactile sensing is effectively promoting development and innovation in many fields with its flexible and efficient perception capabilities. Optical fiber, with its ability to perceive and transmit information and its flexible characteristics, is considered a promising solution in the field of tactile bionics. In this work, one optical fiber tactile sensing system based on a flexible PDMS-embedded optical fiber ring resonator (FRR) is designed for braille recognition, and the Pound-Drever-Hall (PDH) demodulation scheme is adopted to improve the detection sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!