The problem of X-ray diffraction from multilayer-coated blazed diffraction gratings is analyzed. Invalidity of the conventional condition of maximal diffraction efficiency observed in previous experiments is explained theoretically. This is attributed to two factors: contribution of anti-blaze facets to diffraction efficiency and effect of strongly asymmetric diffraction. We demonstrate that a proper choice of the multilayer d-spacing allows to design grating with the diffraction efficiency close to the maximal possible one throughout the tender X-ray range (E∼1-5 keV). An optimization procedure is suggested for the first time to choose the optimal grating parameters and the operation diffraction order to obtain a high fix-focus constant and high diffraction efficiency simultaneously in a wide spectral range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.28.000821 | DOI Listing |
Nanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFSci Rep
January 2025
School of petroleum engineering, Yangtze University, Wuhan, 430100, China.
Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran.
This study explores the development of a sustainable drug delivery system using cellulose nanoparticles (CNPs) derived from potato pulp for the controlled release of phosphoaminopyrazine (PAP), a promising anticancer agent. CNPs were synthesized via nanoprecipitation, and PAP was loaded through in-situ nanoprecipitation, achieving a high loading efficiency of 79.2 %.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:
Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!