Laser-based fabrication can be an alternative technology to mechanical grinding and polishing processes. However, the performance of these elements in real applications still needs to be validated. In this paper, we demonstrate that the subtractive fabrication technology is able to produce high-quality axicons from fused silica, which can be efficiently used for glass processing. We comprehensively investigate axicons, fabricated by ultrashort pulsed laser ablation with subsequent CO laser polishing, and compare their performance with commercially available axicons. We show that laser-fabricated axicons are comparable in quality with a precision commercial axicon. Furthermore, we demonstrate the intra-volume glass modification and dicing, utilising mJ-level laser pulses. We show that the tilting operation of the laser-fabricated axicons results in the formation of directional transverse cracks, which significantly enhance the 1 mm-thick glass dicing process.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.377108DOI Listing

Publication Analysis

Top Keywords

laser-fabricated axicons
12
glass processing
8
axicons
5
axicons challenging
4
challenging conventional
4
conventional optics
4
glass
4
optics glass
4
processing applications
4
applications laser-based
4

Similar Publications

Laser-based fabrication can be an alternative technology to mechanical grinding and polishing processes. However, the performance of these elements in real applications still needs to be validated. In this paper, we demonstrate that the subtractive fabrication technology is able to produce high-quality axicons from fused silica, which can be efficiently used for glass processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!