A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing. | LitMetric

AI Article Synopsis

  • * After annealing, our optical resonators achieve quality factors exceeding 41,000 and significantly lower propagation losses of 7 dB/cm, improving from 24 dB/cm in non-annealed chips.
  • * The improved performance is due to better SiC crystallinity and reduced surface roughness, while the thermo-optic coefficient remains stable and comparable to bulk SiC, indicating our method is effective for high-performance SiC circuits.

Article Abstract

We fabricate suspended single-mode optical waveguides and ring resonators in 3C silicon carbide (SiC) that operate at telecommunication wavelength, and leverage post-fabrication thermal annealing to minimize optical propagation losses. Annealed optical resonators yield quality factors of over 41,000, which corresponds to a propagation loss of 7 dB/cm, and is a significant improvement over the 24 dB/cm in the case of the non-annealed chip. This improvement is attributed to the enhancement of SiC crystallinity and a significant reduction of waveguide surface roughness, from 2.4 nm to below 1.7 nm. The latter is attributed to surface layer oxide growth during the annealing step. We confirm that the thermo-optic coefficient, an important parameter governing high-power and temperature-dependent performance of SiC, does not vary with annealing and is comparable to that of bulk SiC. Our annealing-based approach, which is especially suitable for suspended structures, offers a straightforward way to realize high-performance 3C-SiC integrated circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.381601DOI Listing

Publication Analysis

Top Keywords

optical resonators
8
resonators silicon
8
silicon carbide
8
thermal annealing
8
high-q suspended
4
optical
4
suspended optical
4
carbide thermal
4
annealing
4
annealing fabricate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!